If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49-81y^2=0
a = -81; b = 0; c = +49;
Δ = b2-4ac
Δ = 02-4·(-81)·49
Δ = 15876
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{15876}=126$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-126}{2*-81}=\frac{-126}{-162} =7/9 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+126}{2*-81}=\frac{126}{-162} =-7/9 $
| 4(2)+m=35 | | 7x+30=141+50 | | 7x+30=141450 | | a^2-4a+51=0 | | 5(6w+4)−14=−10(−3w−5)−44 | | 4x²+9x+9=0 | | 8^(x+6)=11^(10x) | | (x+1)/2=(x+3)/3 | | 1.5x-0.5x=10 | | -12-7-12-7=x | | 3/2m+1/5m=2 | | x/9+1/3=1/18 | | x/9+1/3=1/8 | | 12a^2+11a2=0 | | 2(n+2)=9(6-n) | | 11-4x=-7x+17 | | x/16+2X=33 | | 2(x-10)=-6+2 | | -13+7=x+9 | | 2(x-10)=6x+10 | | 7(2m-1)-(3/5)m=6/5(4-3m) | | (Xx2)+125=2059 | | 3r^2-3r+1=37 | | x^2-20x+181=0 | | 31-(2x+9)=2(x+6)+x | | 1+4x-8=0 | | 8a-(4a-3)=1 | | 12x-18+8x-12+x=180 | | 32=9/4x | | 42=x-19 | | 1/6x+3/2=-1/3 | | 6(x-6)+2=8(x+20-6 |